Mechanism-Based Inhibition of CYP2C8: Differentiation by IC_{50} Shift Approach and Enzyme Inactivation Kinetics

Zhiming Wen, Carol Kiss, Nicole Harker, Joseph Rager, Jibin Li, Sid Bhoopathi, Albert Owen, Chris Bode, and Ismael Hidalgo
Absorption Systems LP, Exton, PA 19341, USA

OVERVIEW
PURPOSE: To investigate the inhibitory pattern of reversible and mechanism-based inhibitors of CYP2C8 and estimate the enzyme inactivation kinetics of known mechanism-based inhibitors of CYP2C8.

METHODS: Determination of the IC_{50} values of known reversible and mechanism-based inhibitors of CYP2C8 using human liver microsomes with a 30-min pre-incubation in the presence and absence of NADPH. Estimation of the enzyme inactivation kinetics of known mechanism-based inhibitors of CYP2C8 by the pre-incubation in the presence of NADPH with multiple pre-incubation times and multiple inhibitor concentrations in human liver microsomes followed by the enzyme activity assay using amodiaquine as the probe substrate.

CONCLUSIONS: The IC_{50} shift approach can be used to differentiate reversible and mechanism-based inhibitors.

INTRODUCTION
Mechanism-based inhibition of cytochrome P450 (CYPs) reactions leads to irreversible or quasi-irreversible inactivation of CYPs, and has greater clinical impact than reversible inhibition. Determining whether a new chemical entity is a reversible or mechanism-based inhibitor of CYP-mediated reactions is critical in drug discovery and development. In this study, known reversible (quercetin and montelukast) and mechanism-based inhibitors (phenelzine, amiodarone, and gemfibrozil glucuronide) of human CYP2C8 were investigated with pooled human liver microsomes (HLMs) by an IC_{50} shift method [1]. In the IC_{50} shift approach, IC_{50} values are determined using a 30-min pre-incubation with chemical inhibitors in the presence and absence of NADPH prior to adding probe substrates. The inhibition type (reversible or mechanism-based) is estimated based on the relative IC_{50} values under the two incubation conditions.

METHODS
30-Minute Pre-Incubation in the presence and absence of NADPH
CYP inhibitors were pre-incubated at 37 °C for 30 min with HLMs (0.25 mg/mL) in the presence and absence of NADPH (1 mM). CYP reactions were initiated by adding probe substrates (final concentrations were at ~K_m) without and with NADPH. The HLMs and probe substrates were incubated at 37 °C for 20 min, and the reaction was terminated with ice-cold acetonitrile containing 0.1% formic acid. After centrifugation, the supernatant was injected for the quantitation of probe substrate metabolites by LC-MS/MS.

Co-Incubation and Pre-Incubation in the presence of NADPH [2]
For co-incubation, substrates and inhibitors were incubated at 37 °C for 20 min with HLMs (0.25 mg/mL) and NADPH (1 mM). For pre-incubation, inhibitors were pre-incubated in the presence of NADPH (1 mM) for 30 min with HLMs (0.25 mg/mL), and incubated for an additional 20 min after the addition of substrates. CYP reactions were terminated by adding ice-cold acetonitrile containing 0.1% formic acid. After centrifugation, the supernatant was injected for the quantitation of probe substrate metabolites by LC-MS/MS.

Estimation of Enzyme Inactivation Kinetics
Known mechanism-based inhibitors (phenelzine, amiodarone, and gemfibrozil glucuronide) of CYP2C8 at six concentration levels were pre-incubated with HLMs (1 mg/mL, in the final pre-incubation) containing phosphate buffer (0.1 M, pH 7.4), MgCl_2 (5 mM in the final pre-incubation), and NADPH (1 mM) in the final pre-incubation times (0, 5, 10, 15, 20, and 30 min). At each pre-incubation time, aliquots (10 μL) of the pre-incubated solutions were withdrawn and added into the CYP2C8 enzyme activity incubation solutions (190 μL) containing amiodarone (10 μM in the final incubation, at approximately 5 x K_m), phosphate buffer (0.1 M, pH 7.4), MgCl_2 (5 mM in the final incubation), and NADPH (1 mM in the final incubation) with a 20-fold dilution. CYP reactions were conducted by incubating at 37 °C for 20 minutes, and terminated with ice-cold acetonitrile containing 0.1% formic acid. After the removal of protein by centrifugation at 3,000 rpm for 10 min at 4°C, the supernatants were transferred into HPLC vials and the formation of desethylamodiaquine (metabolite of amodiaquine) was determined by LC-MS/MS. The inactivation parameters (K_i and K_{inact}) were estimated by fitting the experimental data to the following equation using a non-linear least-squares regression method by GraphPad Prism software:

\[k_{obs} = \frac{k_{max} \times [I]}{K_i + [I]} \]

where, \(k_{obs} \) is the observed inactivation rate constant, \(K_i \) is the inhibitor concentration at half-maximal inactivation, \(k_{max} \) is the maximum inactivation rate constant, and \(I \) is the inhibitor concentration.

RESULTS

1. K_i and V_{max} of Amodiaquine for CYP2C8

![Figure 1](image1)

2. IC_{50} Values of Known Reversible and Mechanism-Based Inhibitors

![Figure 2](image2)

Table 1. IC_{50} shift values (n=2) of known reversible and mechanism-based inhibitors by pre-incubation and co-incubation approaches

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>IC_{50} (Pre-incubation: NADPH)</th>
<th>IC_{50} (Co-incubation: NADPH)</th>
<th>IC_{50} Shift (NADPH/NADPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenelzine</td>
<td>150</td>
<td>100</td>
<td>0.18</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>250</td>
<td>150</td>
<td>0.02</td>
</tr>
<tr>
<td>Gemfibrozil Glucuronide</td>
<td>100</td>
<td>50</td>
<td>0.38</td>
</tr>
</tbody>
</table>

3. Enzyme Inactivation Kinetics of Known Mechanism-Based Inhibitors

![Figure 3](image3)

Table 2. K_i (inhibitor concentration at half-maximal inactivation) and K_{inact} (maximum inactivation rate constant) values (n=2) of known mechanism-based inhibitors for CYP2C8

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>K_i (μM)</th>
<th>K_{inact} (min^-1)</th>
<th>K_{inact}/K_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenelzine</td>
<td>0.085</td>
<td>25</td>
<td>0.024</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>0.067</td>
<td>25</td>
<td>0.0082</td>
</tr>
<tr>
<td>Gemfibrozil Glucuronide</td>
<td>0.23</td>
<td>50</td>
<td>0.0044</td>
</tr>
</tbody>
</table>

CONCLUSION
Mechanism-based inhibitors demonstrated a significant leftward IC_{50} shift after pre-incubation in the presence of NADPH, in comparison with the IC_{50} after pre-incubation in the absence of NADPH. In contrast, reversible inhibitors produced a rightward IC_{50} shift or no change in IC_{50} after pre-incubation with NADPH. Similar IC_{50} alterations were observed by the co-incubation approach versus the pre-incubation approach in the presence of NADPH.

The IC_{50} shift estimated by either the pre-incubation or co-incubation approaches can be used to differentiate reversible and mechanism-based inhibitors of CYPs in vitro.

The enzyme inactivation kinetics of mechanism-based inhibitors can be assessed by pre-incubation in the presence of NADPH with multiple pre-incubation times (0, 5, 10, 15, 20, and 30 min) and multiple inhibitor concentrations using human liver microsomes (1 mg/mL) followed by the enzyme activity assay using a probe substrate at the concentration of approximately 5-fold K_i with a 20-fold dilution from the pre-incubated solutions.

References
1. Obach, et al., Drug Metab Dispos 2007, 35:246-255